Pore-scale Simulation of Water Alternate Gas Injection
نویسندگان
چکیده
We use a three-dimensional mixed-wet random network model representing Berea sandstone to compute displacement paths and relative permeabilities for water alternating gas (WAG) flooding. First we reproduce cycles of water and gas injection observed in previously published experimental studies. We predict the measured oil, water and gas relative permeabilities accurately. We discuss the hysteresis trends in the water and gas relative permeabilities and compare the behavior of water-wet and oil-wet media. We interpret the results in terms of pore-scale displacements. In water-wet media the water relative permeability is lower during water injection in the presence of gas due to an increase in oil/water capillary pressure that causes a decrease in wetting layer conductance. The gas relative permeability is higher for displacement cycles after first gas injection at high gas saturation due to cooperative pore filling, but lower at low saturation due to trapping. In oil-wet media, the water relative permeability remains low until water-filled elements span the system at which point the relative permeability increases rapidly. The gas relative permeability is lower in the presence of water than oil because it is no longer the most non-wetting phase.
منابع مشابه
Experimental and Numerical Pore Scale Study of Residual Gas Saturation in Water/Gas Imbibition Phenomena
Residual gas saturation is one of the most important parameter in determining recovery factor of water-drive gas reservoir. Visual observation of processes occurring at the pore level in micromodels can give an insight to fluid displacements at the larger scale and also help the interpretation of production performance at reservoir scale. In this study experimental tests in a glass micromod...
متن کاملSynthesis and Experimental-Modelling Evaluation of Nanoparticles Movements by Novel Surfactant on Water Injection: An Approach on Mechanical Formation Damage Control and Pore Size Distribution
Water injection is used as a widespread IOR/EOR method and promising formation damages (especially mechanical ones) is a crucial challenge in the near-wellbore of injection wells. The magnesium oxide (MgO) NanoParticles (NPs) considered in the article underwater flooding experiment tests to monitor the promising mechanical formation damage (size exclusion) in lab mechanistic scale include m...
متن کاملSimulation and Experimental Studies of Mineral Scale Formation Effects on Performance of Sirri-C Oil Field under Water Injection
Water injection is an enhanced oil recovery method which is applied for number of reservoirs especially in the offshore fields around the world. Sea-water injection process is usually associated with important concerns affecting the efficiency, safety, and economy of the operation like formation damage, mineral scaling, early breakthrough and corrosion. Incompatibility between injected and ...
متن کاملCritical Parameters Affecting Water Alternating Gas (WAG) Injection in an Iranian Fractured Reservoir
Microscopic oil displacement of water flooding and sweep efficiency of continuous gas injection could be improved by water alternating gas (WAG) injection. The WAG injection process aims to squeeze more oil out of the reservoirs; in this method, water and gas are alternatively injected into the reservoir. Also, availability of hydrocarbon or CO2 gases in the field makes it attractive for gas-ba...
متن کاملMulticomponent mass transfer across water "lms during hydrocarbon gas injection
Understanding the dynamics of pore-scale multicomponent gas and oil mass transfer across water "lms during hydrocarbon gas injection in petroleum reservoirs is important in the design of tertiary oil recovery schemes at the "eld scale. The water "lms prevent oil and gas coming into direct contact and, for miscible gas injection, delay the onset of miscibility. We use a pore-scale model to descr...
متن کامل